Role of ethanolamine utilization and bacterial microcompartment formation in Listeria monocytogenes intracellular infection

Infect Immun. 2024 May 16:e0016224. doi: 10.1128/iai.00162-24. Online ahead of print.

Abstract

Ethanolamine (EA) affects the colonization and pathogenicity of certain human bacterial pathogens in the gastrointestinal tract. However, EA can also affect the intracellular survival and replication of host cell invasive bacteria such as Listeria monocytogenes (LMO) and Salmonella enterica serovar Typhimurium (S. Typhimurium). The EA utilization (eut) genes can be categorized as regulatory, enzymatic, or structural, and previous work in LMO showed that loss of genes encoding functions for the enzymatic breakdown of EA inhibited LMO intracellular replication. In this work, we sought to further characterize the role of EA utilization during LMO infection of host cells. Unlike what was previously observed for S. Typhimurium, in LMO, an EA regulator mutant (ΔeutV) was equally deficient in intracellular replication compared to an EA metabolism mutant (ΔeutB), and this was consistent across Caco-2, RAW 264.7, and THP-1 cell lines. The structural genes encode proteins that self-assemble into bacterial microcompartments (BMCs) that encase the enzymes necessary for EA metabolism. For the first time, native EUT BMCs were fluorescently tagged, and EUT BMC formation was observed in vitro and in vivo. Interestingly, BMC formation was observed in bacteria infecting Caco-2 cells, but not the macrophage cell lines. Finally, the cellular immune response of Caco-2 cells to infection with eut mutants was examined, and it was discovered that ΔeutB and ΔeutV mutants similarly elevated the expression of inflammatory cytokines. In conclusion, EA sensing and utilization during LMO intracellular infection are important for optimal LMO replication and immune evasion but are not always concomitant with BMC formation.IMPORTANCEListeria monocytogenes (LMO) is a bacterial pathogen that can cause severe disease in immunocompromised individuals when consumed in contaminated food. It can replicate inside of mammalian cells, escaping detection by the immune system. Therefore, understanding the features of this human pathogen that contribute to its infectiousness and intracellular lifestyle is important. In this work we demonstrate that genes encoding both regulators and enzymes of EA metabolism are important for optimal growth inside mammalian cells. Moreover, the formation of specialized compartments to enable EA metabolism were visualized by tagging with a fluorescent protein and found to form when LMO infects some mammalian cell types, but not others. Interestingly, the formation of the compartments was associated with features consistent with an early stage of the intracellular infection. By characterizing bacterial metabolic pathways that contribute to survival in host environments, we hope to positively impact knowledge and facilitate new treatment strategies.

Keywords: Listeria; bacterial microcompartments; ethanolamine; intracellular infection.