Artificial fluorescent sensor reveals pre-synaptic NMDA receptors switch cholecystokinin release and LTP in the hippocampus

J Neurochem. 2024 May 15. doi: 10.1111/jnc.16128. Online ahead of print.

Abstract

Cholecystokinin (CCK) has been confirmed to be essential in NMDA-dependent long-term potentiation (LTP) at mouse cortical synapses. This paper has proven that CCK is necessary for LTP induced by high-frequency stimulation of mouse hippocampal synapses projected from the entorhinal cortex. We show that the subunit of the axonal NMDA receptor dominant modulates the activity-induced LTP by triggering pre-synaptic CCK release. A functional pre-synaptic NMDA receptor is required to induce LTP mediated by the axonal Ca2+ elevation and CCK exocytosis at CCK-specific neurons. Genetic depletion of the GluN1 subunit of NMDA receptors on CCK neurons, which projected from the entorhinal cortex largely abolished the axonal Ca2+ elevation and disturbed the secretion of CCK in hippocampus. These results demonstrate that activity-induced LTP at the hippocampal synapse is CCK-dependent, and CCK secretion from the axonal terminal is modulated by pre-synaptic NMDA receptors.

Keywords: Ca2+; NMDA receptor; cholecystokinin; hippocampus; long‐term potentiation.