Enhanced anti-tumor efficacy with multi-transgene armed mesenchymal stem cells for treating peritoneal carcinomatosis

J Transl Med. 2024 May 15;22(1):463. doi: 10.1186/s12967-024-05278-5.

Abstract

Background: Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime.

Methods: In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking.

Results: Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively.

Conclusions: Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.

Keywords: Mesenchymal stem cells; Non-viral gene modification; Peritoneal carcinomatosis.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cytosine Deaminase / genetics
  • Cytosine Deaminase / metabolism
  • Female
  • Humans
  • Interferon-beta / genetics
  • Interferon-beta / metabolism
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells* / cytology
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • Pentosyltransferases* / genetics
  • Pentosyltransferases* / metabolism
  • Peritoneal Neoplasms* / genetics
  • Peritoneal Neoplasms* / pathology
  • Peritoneal Neoplasms* / secondary
  • Peritoneal Neoplasms* / therapy
  • Transgenes*
  • Xenograft Model Antitumor Assays