Unraveling the Hydration Shell Structure and Dynamics of Group 10 Aqua Ions

J Phys Chem Lett. 2024 May 23;15(20):5517-5528. doi: 10.1021/acs.jpclett.4c00464. Epub 2024 May 15.

Abstract

We present ab initio simulations based on subsystem DFT of group 10 aqua ions accurately compared against experimental data on hydration structure. Our simulations provide insights into the molecular structures and dynamics of hydration shells, offering recalibrated interpretations of experimental results. We observe a soft, but distinct second hydration shell in Palladium (Pd) due to a balance between thermal fluctuations, metal-water interactions, and hydrogen bonding. Nickel (Ni) and platinum (Pt) exhibit more rigid hydration shells. Notably, our simulations align with experimental findings for Pd, showing axial hydration marked by a broad peak at about 3 Å in the Pd-O radial distribution function, revising the previously sharp "mesoshell" prediction. We introduce the "hydrogen bond dome" concept to describe a resilient network of hydrogen-bonded water molecules around the metal, which plays a critical role in the axial hydration dynamics.