Negative Deterministic Information-Based Multiple Instance Learning for Weakly Supervised Object Detection and Segmentation

IEEE Trans Neural Netw Learn Syst. 2024 May 15:PP. doi: 10.1109/TNNLS.2024.3395751. Online ahead of print.

Abstract

Weakly supervised object detection (WSOD) and semantic segmentation with image-level annotations have attracted extensive attention due to their high label efficiency. Multiple instance learning (MIL) offers a feasible solution for the two tasks by treating each image as a bag with a series of instances (object regions or pixels) and identifying foreground instances that contribute to bag classification. However, conventional MIL paradigms often suffer from issues, e.g., discriminative instance domination and missing instances. In this article, we observe that negative instances usually contain valuable deterministic information, which is the key to solving the two issues. Motivated by this, we propose a novel MIL paradigm based on negative deterministic information (NDI), termed NDI-MIL, which is based on two core designs with a progressive relation: NDI collection and negative contrastive learning (NCL). In NDI collection, we identify and distill NDI from negative instances online by a dynamic feature bank. The collected NDI is then utilized in a NCL mechanism to locate and punish those discriminative regions, by which the discriminative instance domination and missing instances issues are effectively addressed, leading to improved object-and pixel-level localization accuracy and completeness. In addition, we design an NDI-guided instance selection (NGIS) strategy to further enhance the systematic performance. Experimental results on several public benchmarks, including PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO, show that our method achieves satisfactory performance. The code is available at: https://github.com/GC-WSL/NDI.