Circulating Levels of T-Cell Traits and the Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study

Mol Neurobiol. 2024 May 15. doi: 10.1007/s12035-024-04226-0. Online ahead of print.

Abstract

Amyotrophic lateral sclerosis (ALS) represents a rare and potentially fatal neurodegenerative disease. Diverse T-cell subsets could potentially exert diametrically opposite impacts upon ALS development. A two-sample Mendelian randomization (MR) analysis was performed to investigate the correlation between 244 T-cell subsets and ALS risk. Genetic instrumental variables were procured from a standard genome-wide association study (GWAS) that encompassed 244 T-cell subsets in 3757 individuals of European lineage. ALS-related data were collected from a GWAS comprising 20,806 ALS instances and 59,804 European control participants. Multiple sensitivity analyses were performed to verify the robustness of the significant results. Reverse MR analysis was used for delineating the effects of ALS on the characteristics of T-cells. After multiple comparison corrections, 24 out of the 244 subtypes demonstrated a potential association with ALS risk. Significantly, 75% of these associations encompassed the expression of the CD3 on diverse T-cell subtypes, revealing a highly consistent inverse relation to ALS risk. The proportion of T regulatory cells (Tregs) in CD4+ T cells and secreting Tregs in CD4+ T cells demonstrated negative associations with the risk of ALS. CCR7 expression on naive CD4+ T cells and CCR7 expression on naive CD8+ T cells showed positive associations with ALS risk. Certain T-cell subsets, particularly those identified by CD3 expression on terminally differentiated CD8+ T cells, proportions of Tregs, and CCR7 expression, indicated an association with ALS risk. These findings harmonize with and extend previous observational studies investigating the involvement of T lymphocyte subset-induced immunological processes in ALS.

Keywords: Amyotrophic lateral sclerosis; CD3+ T cells; Mendelian randomization; T cell; Treg.