State-to-state dynamics and machine learning predictions of inelastic and reactive O(3P) + CO(1∑+) collisions relevant to hypersonic flows

J Chem Phys. 2024 May 7;160(17):174310. doi: 10.1063/5.0195543.

Abstract

The state-to-state (STS) inelastic energy transfer and O-atom exchange reaction between O and CO(v), as two fundamental processes in non-equilibrium air flow around spacecraft entering Mars' atmosphere, yield the same products and both make significant contributions to the O + CO(v) → O + CO(v') collisions. The inelastic energy transfer competes with the O-atom exchange reaction. The detailed reaction mechanisms of these two elementary processes and their specific contributions to the CO relaxation process are still unclear. To address these concerns, we performed systematic investigations on the 3A' and 3A″ potential energy surfaces (PESs) of CO2 using quasi-classical trajectory (QCT) calculations. Analysis of the collision mechanisms reveals that inelastic collisions have an apparent PES preference (i.e., they tend to occur on the 3A' PES), while reactive collisions do not. Reactive rates decrease significantly when the total collision energy approaches dissociation energy, which differs from the inelastic process. Inelastic rates are generally lower than the reactive rates below ∼10 000 K, except for single quantum jumps, whereas the reverse is observed above ∼10 000 K. In addition, by combining QCT with convolutional neural networks, we have established neural network (NN)-STS1 (inelastic) and NN-STS2 (reactive) models to generate all possible STS cross sections. The NN-based models accurately reproduce the results calculated from QCT calculations. In this study, all calculations have been focused on analyzing collisions at the ground rotational level.