Microscopic Small Airway Abnormalities Identified in Early Idiopathic Pulmonary Fibrosis In Vivo Using Endobronchial Optical Coherence Tomography

Am J Respir Crit Care Med. 2024 May 15. doi: 10.1164/rccm.202401-0249OC. Online ahead of print.

Abstract

Rationale: Idiopathic pulmonary fibrosis (IPF) affects subpleural lung, but is considered to spare small airways. Micro-CT studies demonstrated small airway reduction in end-stage IPF explanted lungs, raising questions about small airway involvement in early-stage disease. Endobronchial optical coherence tomography (EB-OCT) is a volumetric imaging modality that detects microscopic features from subpleural to proximal airways. We use EB-OCT to evaluate small airways in early IPF and control subjects in vivo.

Methods: EB-OCT was performed in 12 IPF and 5 control subjects (matched by age, sex, smoking-history, height, BMI). IPF subjects had early disease with mild restriction (FVC: 83.5% predicted), diagnosed per current guidelines and confirmed by surgical biopsy. EB-OCT volumetric imaging was acquired bronchoscopically in multiple, distinct, bilateral lung locations (total: 97 sites). IPF imaging sites were classified by severity into affected (all criteria for UIP present) and less affected (some but not all criteria for UIP present) sites. Bronchiole count and small airway stereology metrics were measured for each EB-OCT imaging site.

Results: Compared to control subjects (mean: 11.2 bronchioles/cm3; SD: 6.2), there was significant bronchiole reduction in IPF subjects (42% loss; mean: 6.5/cm3; SD: 3.4; p=0.0039), including in IPF affected (48% loss; mean: 5.8/cm3; SD: 2.8; p<0.00001) and IPF less affected (33% loss; mean: 7.5/cm3; SD: 4.1; p=0.024) sites. Stereology metrics showed IPF affected small airways were significantly larger and more distorted/irregular than in IPF less affected sites and control subjects. IPF less affected and control airways were statistically indistinguishable for all stereology parameters (p=0.36-1.0).

Conclusion: EB-OCT demonstrated marked bronchiolar loss in early IPF (between 30 and 50%), even in areas minimally affected by disease, compared to matched controls. These findings support small airway disease as a feature of early IPF, providing novel insight into pathogenesis and potential therapeutic targets.

Keywords: idiopathic pulmonary fibrosis; in vivo microscopy; interstitial lung disease; small airways disease; usual interstitial pneumonia.