Solid-state excimer emission of o-carborane derivatives and applications for stimuli-responsive luminescent materials

Dalton Trans. 2024 Jun 4;53(22):9240-9247. doi: 10.1039/d4dt01072h.

Abstract

o-Carborane is an icosahedral cluster containing boron and has been paid attention as a versatile platform for constructing stimuli-responsive materials with solid-state luminescence properties by suppressing aggregation-caused quenching (ACQ), which is the emission annihilation process observed in condensed states, such as concentrated solutions, solids and films. Non-specific intermolecular interactions in the condensed states resulting in ACQ are disturbed by the spherical boron cluster. More recently, it has been demonstrated from several reports that o-carborane is capable of assisting solid-state excimer emission in aryl-modified o-carboranes. Moreover, some of these materials provide unique stimuli-responsiveness. In the commodity design for solid-state luminescent materials, o-carboranes are responsible for disturbing intermolecular interactions and subsequently presenting solid-state luminescence. On the other hand, excimer emission, which is inducible from the intermolecular photophysical process, has been discovered in the solid state based on o-carborane materials. In this manuscript, recent progress in stimuli-responsive luminescent materials via excimer formation will be described. Moreover, as the further potential of o-carborane materials, recent findings on the photo-salient effect which can be induced through excimer formation followed by photoreaction will also be explained.

Publication types

  • Review