Achieving optimal balance: tuning electrical and optical characteristics of carbon electrodes for emerging photovoltaics

RSC Adv. 2024 May 14;14(22):15571-15581. doi: 10.1039/d4ra01797h. eCollection 2024 May 10.

Abstract

Transparent and conductive electrodes (TCEs) are essential for various optoelectronic and photovoltaic applications, but they often require expensive and complex fabrication methods. In this paper, a unique low-cost, eco-friendly, and scalable method of fabricating TCEs using spray-coated carbon ink is investigated. Firstly the carbon particles used for this process underwent a size reduction from 20 microns to 0.96 microns via ball milling. Then ink was prepared by mixing graphite powder (for conductivity), ethyl cellulose (for viscosity), and toluene (for solubility) with different weight-per-volume ratios (w/v) of 5%, 10%, and 15%. The TCEs were fabricated by spray coating the ink onto glass substrates using an airbrush. The sheet resistance (Ω sq-1) and transparency (%) of the TCEs were measured by a digital multimeter (DMM) probe method and a UV-vis spectrophotometer, respectively. The sheet resistance of the TCEs decreased linearly from 60 to 20 Ω sq-1, while the transparency decreased exponentially from 37.18% to 18.88% as the ink concentration increased from 5% to 15% w/v. This paper also reports the reflectance and absorbance values for each ink concentration. The results demonstrate that spray-coated carbon ink TCEs achieve sheet resistance and transparency values of 20 Ω sq-1 and 18.88%, respectively, with low-cost and eco-friendly materials and methods, which are desirable for optoelectronic and photovoltaic applications. These TCEs can play an important role as electrodes in semi-transparent perovskite cells enhancing their stability and overall efficiency.