The emerging roles of glutamine amidotransferases in metabolism and immune defense

Nucleosides Nucleotides Nucleic Acids. 2024 May 14:1-15. doi: 10.1080/15257770.2024.2351135. Online ahead of print.

Abstract

Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. Carbamoyl-phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the de novo pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis via deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation via up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.

Keywords: Glutamine amidotransferase; innate immunity; nucleotide synthesis; protein deamidation; tumor metabolism; viral infection.