Equally Efficient Perovskite Solar Cells and Modules Fabricated via N-Ethyl-2-Pyrrolidone Optimized Vacuum-Flash

Small Methods. 2024 May 14:e2400428. doi: 10.1002/smtd.202400428. Online ahead of print.

Abstract

Efficiency reduction in perovskite solar cells (PSCs) during the magnification procedure significantly hampers commercialization. Vacuum-flash (VF) has emerged as a promising method to fabricate PSCs with consistent efficiency across scales. However, the slower solvent removal rate of VF compared to the anti-solvent method leads to perovskite films with buried defects. Thus, this work employs low-toxic Lewis base ligand solvent N-ethyl-2-pyrrolidone (NEP) to improve the nucleation process of perovskite films. NEP, with a mechanism similar to that of N-methyl-2-pyrrolidone in FA-based perovskite formation, enhances the solvent removal speed owing to its lower coordination ability. Based on this strategy, p-i-n PSCs with an optimized interface attain a power conversion efficiency (PCE) of 24.19% on an area of 0.08 cm2. The same nucleation process enables perovskite solar modules (PSMs) to achieve a certified PCE of 23.28% on an aperture area of 22.96 cm2, with a high geometric fill factor of 97%, ensuring nearly identical active area PCE (24%) in PSMs as in PSCs. This strategy highlights the potential of NEP as a ligand solvent choice for the commercialization of PSCs.

Keywords: perovskite solar modules; solvent engineering; vacuum‐flash; without efficiency loss.