Earthworm-Inspired Ultra-Durable Sliding Triboelectric Nanogenerator with Bionic Self-Replenishing Lubricating Property for Wind Energy Harvesting and Self-Powered Intelligent Sports Monitoring

Adv Sci (Weinh). 2024 May 13:e2401636. doi: 10.1002/advs.202401636. Online ahead of print.

Abstract

Triboelectric nanogenerators (TENGs), a promising strategy for harvesting distributed low-quality power sources, face inevitable bottlenecks regarding long-term abrasion and poor durability. Herein, both issues are addressed by selecting an earthworm-inspired self-replenishing bionic film (ERB) as the tribo-material of sliding-freestanding TENGs (SF-TENGs), it consists of an interconnected 3D porous network structure capable of storing and releasing lubricant under cyclic mechanical stimuli. Thanks to the superiority of self-replenishing property, there is no need for periodic replenishment and accurate content control of lubricant over the interfacial-lubricating SF-TENGs based on dense tribo-layers. Additionally, an SF-TENG based on ERB film (ERB-TENG) demonstrates remarkable output stability with only a slight attenuation of 1% after continuous operation for 100 000 cycles. Moreover, the ERB-TENG displays a distinguished anti-wear property, exhibiting no distinct abrasion with an ultra-low coefficient of friction (0.077) and maintaining output stability over a prolonged period of 35 days. Furthermore, integration with an energy management circuit enables the ERB-TENG to achieve a 39-fold boost in charging speed. This work proposes a creative approach to enhance the durability and extend the lifespan of TENG devices, which is also successfully applied to wind energy harvesting and intelligent sports monitoring.

Keywords: bionic self‐replenishing lubricating; intelligent sports monitoring; sliding triboelectric nanogenerator; ultra‐durable; wind energy harvesting.