Internal Energy Dependence of the Pyrrole Dimer Cation Structures Formed in a Supersonic Plasma Expansion: Charge-Resonance and Hydrogen-Bonded Isomers

J Phys Chem A. 2024 May 23;128(20):3993-4006. doi: 10.1021/acs.jpca.4c01834. Epub 2024 May 13.

Abstract

The structures of the pyrrole dimer cation (Py2+) formed in an electron-ionization-driven supersonic plasma expansion of Py seeded in Ar or N2 are probed as a function of its internal energy by infrared photodissociation (IRPD) spectroscopy in a tandem mass spectrometer. The IRPD spectra recorded in the CH and NH stretch ranges are analyzed by dispersion-corrected density functional theory (DFT) calculations at the B3LYP-D3/aug-cc-pVTZ level. The spectra of the cold Ar/N2-tagged Py2+ clusters, Py2+Ln (n = 1-5 for Ar, n = 1 for N2), indicate the exclusive formation of the most stable antiparallel π-stacked Py2+ structure under cold conditions, which is stabilized by charge-resonance interaction. The bare Py2+ dimers produced in the ion source have higher internal energy, and the observation of additional transitions in their IRPD spectra suggests a minor population of less stable hydrogen-bonded isomers composed of heterocyclic Py/Py+ structures formed after intramolecular H atom transfer and ring opening. These intermolecular isomers differ from the chemically bonded structures proposed earlier in the analysis of IRPD spectra of Py2+ generated by VUV ionization of neutral Pyn clusters.