UHPLC-MS/MS combined with microdialysis for simultaneous determination of nicotine and neurotransmitter metabolites in the rat hippocampal brain region: application to pharmacokinetic and pharmacodynamic study

Anal Methods. 2024 May 13. doi: 10.1039/d4ay00522h. Online ahead of print.

Abstract

Nicotine crosses the blood-brain barrier and interacts with nicotinic acetylcholine receptors, initiating a cascade of neurotransmitter effects with potential therapeutic implications for neurodegenerative conditions such as Alzheimer's and Parkinson's disease. The hippocampus, pivotal for cognitive processes, plays a crucial role in nicotine-mediated cognitive enhancement due to its abundant expression of nicotinic acetylcholine receptors, particularly the α7 subtype, which is heavily implicated in hippocampus-related behavioral functions and dysfunctions. However, the intricate process of nicotine metabolism within the hippocampus remains poorly understood, impeding our comprehension of how nicotine and its metabolites modulate neurotransmitter dynamics. To address this gap, we have developed and validated a novel methodology combining microdialysis with UHPLC-MS/MS, enabling simultaneous detection of 12 neurotransmitters, nicotine, and its seven metabolites within the rat hippocampus. The linearity range of the targeted compounds is satisfactory (R2 > 0.9970), with intra-day and inter-day precision not exceeding 12.7%, and accuracy ranging from -12.4% to 13.7%. Our findings reveal differential pharmacokinetics of nicotine and its metabolites in the α7KO group compared to the control group, characterized by heightened nicotine absorption and slower elimination and distribution in the former. Notably, the pharmacokinetic parameters of cotinine exhibit similarity across both groups. Studies investigating the impact of nicotine on monoamine neurotransmitters have elucidated its capacity to augment the release of dopamine, serotonin, norepinephrine, glutamate, and acetylcholine in the rat hippocampus. This integrated approach facilitates a comprehensive analysis of neurotransmitter alterations within the hippocampal region following nicotine administration, thereby providing robust technical support and scientific rationale for understanding the neurochemical effects of nicotine and its metabolites. Further exploration into the pharmacokinetics and pharmacodynamics of nicotine holds promise for uncovering novel therapeutic avenues in the management of neurodegenerative diseases such as Alzheimer's.