Numerical Approximation of a Nonequilibrium Model of Gradient Elution Chromatography Considering Different Functional Relationships between Model Parameters and Solvent Composition

ACS Omega. 2024 Apr 25;9(18):20601-20615. doi: 10.1021/acsomega.4c02444. eCollection 2024 May 7.

Abstract

In this paper, a rigorous theoretical study is conducted to analyze the influence of varying solvent compositions on the retention characteristics of elution profiles within a fixed-bed liquid chromatographic column. In gradient chromatography, the propagation speed of elution profiles is manipulated through a progressive variation in the mobile-phase composition. Consequently, enhanced separation of the mixture components can be achieved together with a reduction in the requisite recycling times for subsequent injections. In other words, both the efficiency and the selectivity of the column can be enhanced. The lumped kinetic model coupled with the convection-diffusion equation for the volume fraction of the solvent is applied to simulate the process. The resulting nonlinear model equations are numerically solved by applying a semidiscrete second-order finite-volume method. The numerical solutions are utilized to quantify the effects of gradient starting and ending times, solvent composition, solvent strength parameters, and gradient slope on the concentration profiles. Additionally, temporal numerical moments are plotted versus the starting and ending times of the gradient, and standard performance criteria are presented for evaluating the process performance. The outcomes of this investigation will contribute to further enhancements in gradient elution chromatography.