Early Detection of the Emerging SARS-CoV-2 BA.2.86 Lineage Through Wastewater Surveillance Using a Mediator Probe PCR Assay - Shenzhen City, Guangdong Province, China, 2023

China CDC Wkly. 2024 Apr 12;6(15):332-338. doi: 10.46234/ccdcw2024.063.

Abstract

Introduction: The emergence of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineage, BA.2.86, has sparked global public health concerns for its potential heightened transmissibility and immune evasion. Utilizing data from Shenzhen's city-wide wastewater surveillance system, we highlight the presence of the BA.2.86 lineage in Shenzhen.

Methods: A mediator probe polymerase chain reaction (PCR) assay was developed to detect the BA.2.86 lineage in wastewater by targeting a specific mutation (Spike: A264D). Between September 19 and December 10, 2023, 781 wastewater samples from 38 wastewater treatment plants (WWTPs) and 9 pump stations in ten districts of Shenzhen were examined. Through multiple short-amplicon sequencing, three positive samples were identified.

Results: The BA.2.86 lineage was identified in the wastewater of Futian and Nanshan districts in Shenzhen on December 2, 2023. From December 2 to 10, a total of 21 BA.2.86-positive wastewater samples were found across 6 districts (Futian, Nanshan, Longhua, Baoan, Longgang, and Luohu) in Shenzhen. The weighted average viral load of the BA.2.86 lineage in Shenzhen's wastewater was 43.5 copies/L on December 2, increased to 219.8 copies/L on December 4, and then decreased to approximately 100 copies/L on December 6, 8, and 10.

Conclusions: The mediator probe PCR assay, designed for swift detection of low viral concentrations of the BA.2.86 lineage in wastewater samples, shows promise for detecting different SARS-CoV-2 variants. Wastewater surveillance could serve as an early detection system for promptly identifying specific SARS-CoV-2 variants as they emerge.

Keywords: SARS-CoV-2 BA.2.86 lineage; early detection; mediator probe PCR assay; wastewater surveillance.

Grants and funding

Supported by the National Natural Science Foundation of China (82373704), the Shenzhen Science and Technology Program (KCXFZ20230731093959008) and the Sanming Project of Medicine in Shenzhen (SZSM202311015) for financial support