High expression of SRSF1 facilitates osteosarcoma progression and unveils its potential mechanisms

BMC Cancer. 2024 May 12;24(1):580. doi: 10.1186/s12885-024-12346-y.

Abstract

Background: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS.

Methods: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1.

Results: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS.

Conclusions: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.

Keywords: Alternative splicing; Osteosarcoma; RNA-sequence; SRSF1; Tumor progression.

MeSH terms

  • Alternative Splicing
  • Apoptosis* / genetics
  • Bone Neoplasms* / genetics
  • Bone Neoplasms* / metabolism
  • Bone Neoplasms* / pathology
  • Cell Line, Tumor
  • Cell Movement* / genetics
  • Cell Proliferation* / genetics
  • Disease Progression*
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Osteosarcoma* / genetics
  • Osteosarcoma* / metabolism
  • Osteosarcoma* / pathology
  • Serine-Arginine Splicing Factors* / genetics
  • Serine-Arginine Splicing Factors* / metabolism
  • Up-Regulation

Substances

  • Serine-Arginine Splicing Factors
  • SRSF1 protein, human