Characteristics, sources, and health risks of volatile organic compounds in different functional regions of Shenyang

Sci Total Environ. 2024 May 10:933:173148. doi: 10.1016/j.scitotenv.2024.173148. Online ahead of print.

Abstract

The concentration of 56 volatile organic compounds (VOCs) in the ambient air of Shenyang was continuously monitored at four sites in 2021. The characteristics, sources, secondary pollution potential and health risks of VOCs in different functional regions of Shenyang were discussed. The results indicate that the concentration of VOCs in industrial regions was significantly higher than that in non-industrial regions, with a mean of 41.09 ± 69.82 parts per billion volumes (ppbv) compared to 19.99 ± 17.86 ppbv (commercial & residential region in urban fringe), 27.51 ± 28.81 ppbv (educational & scenic region) and 29.71 ± 23.97 ppbv (commercial & residential region in urban center). The positive matrix factorization (PMF) model was utilized to assign the sources of VOCs in Shenyang, and six factors were recognized: gasoline vehicles (34.8 %), diesel vehicles (28.3 %), combustion (11.4 %), biogenic emissions (9.7 %), industrial processes (8.2 %), and fuel evaporation (7.7 %). The results of the reactivity evaluation indicated that the ozone (O3) formation potential (OFP) was primarily influenced by industrial processes (29.2 %), diesel vehicles (25.7 %), biogenic emissions (17.0 %). These three factors were also the top three contributors to secondary organic aerosol formation potential (SOAP), accounting for 44.2 %, 9.4 % and 30.3 %, respectively. At the all four sites, the non-carcinogenic and carcinogenic risks of VOCs ranged from 1.6 × 10-2 to 3.8 × 10-2 and from 2.3 × 10-6 to 3.3 × 10-6, respectively. And the main risks can be attributed to emissions from industrial processes and gasoline vehicles. These findings suggested to strengthen the control of vehicle emissions throughout all regions in Shenyang and industrial processes emissions in industrial regions.

Keywords: Ozone; Positive matrix factorization (PMF); Secondary pollution; Source apportionment; Volatile organic compounds (VOCs).