Metabolic perturbations in zebrafish (Danio rerio) larvae exposed to sulfentrazone and imidacloprid

Sci Total Environ. 2024 May 10:933:173150. doi: 10.1016/j.scitotenv.2024.173150. Online ahead of print.

Abstract

The intensive and widespread application of pesticides in agroecosystems can lead to the simultaneous exposure of non-target aquatic organisms to insecticides and herbicides. However, the underlying mechanisms through which aquatic organisms undergo metabolic reprogramming to withstand the combined effects of the insecticide imidacloprid (IMI) and herbicide sulfentrazone (SUL) remain poorly elucidated. This study employs metabolomics to investigate the effects of individual and combined exposures to IMI and SUL on zebrafish (Danio rerio), aiming to simulate complex environmental conditions. Metabolomics analysis revealed extensive metabolic reprogramming in larvae induced by the selected agrochemicals. Both individual and combined exposures disrupted nucleotide metabolism, inhibited glycolysis, and led to the accumulation of acetylcholine through the shared modulation of differential metabolites. Notably, individual exposure exhibited a unique mode of action. Larvae exposed to IMI alone showed mitochondrial dysfunction, potentially stemming from interference with the electron transport chain, while SUL-induced disruptions were associated with glycerophospholipid accumulation, marking it as a critical target. Additionally, calculations of the metabolic effect level index indicated antagonistic interactions between SUL and IMI mixtures at an overall metabolic level. The results obtained through investigating the lethal and sub-lethal effects also revealed that the simultaneous application of SUL and IMI may have the potential to diminish acute and developmental toxicity in zebrafish. This study underscores the significance of metabolomics as a valuable and effective strategy for deciphering the toxicity and interactions of agrochemical mixtures.

Keywords: Combined toxicity; Imidacloprid; Metabolomics; Sulfentrazone.