Impact of PD-L1 gene polymorphisms and interactions with cooking with solid fuel exposure on tuberculosis

Public Health Genomics. 2024 May 10. doi: 10.1159/000538904. Online ahead of print.

Abstract

Introduction Given that PD-L1 is a crucial immune checkpoint in regulating T cell responses, the aim of this study was to explore the impact of PD-L1 gene polymorphism and its interaction with cooking with solid fuel on susceptibility to tuberculosis (TB) in Chinese Han populations. Methods A total of 503 TB patients and 494 healthy controls were enrolled in this case-control study. Mass spectrometry (MS) technology was applied to genotype rs2297136 and rs4143815 of PD-L1 genes. The associations between SNPs and TB were assessed using unconditional logistic regression analysis. Marginal structural linear odds models were used to estimate the gene-environment interactions. Results Compared with genotype CC, genotypes GG and CG + GG at rs4143815 locus were significantly associated with susceptibility to TB (OR: 3.074 and 1.506, respectively, P<0.05). However, no statistical association was found between rs2297136 SNP and TB risk. Moreover, the relative excess risk of interaction (RERI) between rs4143815 of the PD-L1 gene and cooking with solid fuel was 2.365 (95% CI 1.922,2.809), suggesting positive interactions with TB susceptibility. Conclusion The rs4143815 polymorphism of the PD-L1 gene was associated with susceptibility to TB in Chinese Han populations. There were significantly positive interactions between rs4143815 and cooking with solid fuel.