NADPH and NAC synergistically inhibits chronic ocular hypertension-induced neurodegeneration and neuroinflammation through regulating p38/MAPK pathway and peroxidation

Biomed Pharmacother. 2024 May 11:175:116711. doi: 10.1016/j.biopha.2024.116711. Online ahead of print.

Abstract

Glaucoma, the leading cause of irreversible blindness worldwide, is characterized by neurodegeneration and neuroinflammation with retinal NAD/NADP and GSH decline. Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADP) and glutathione (GSH) are two redox reducers in neuronal and glial metabolism. However, therapeutic strategies targeting NAD/NADP or GSH do not exert ideal effects, and the underlying mechanisms are still poorly understood. We assessed morphological changes in retinal ganglion cells (RGCs), the affected neurons in glaucoma, and Müller cells, the major glial cells in the retina, as well as the levels of phosphorylated p38 (p-p38) and Caspase-3 in glaucoma patients. We constructed a modified chronic ocular hypertensive rat model and an oxygen-glucose deprivation (OGD) cell model. After applying NADPH and N-acetylcysteine (NAC), a precursor to cysteine, the rate-limiting substrate in GSH biosynthesis, to cells, apoptosis, axonal damage and peroxidation were reduced in the RGCs of the NAC group and p-p38 levels were decreased in the RGCs of the NADPH group, while in stimulated Müller cells cultured individually or cocultured with RGCs, gliosis and p38/MAPK, rather than JNK/MAPK, activation were inhibited. The results were more synergistic in the rat model, where either NADPH or NAC showed crossover effects on inhibiting peroxidation and p38/MAPK pathway activation. Moreover, the combination of NADPH and NAC ameliorated RGC electrophysiological function and prevented Müller cell gliosis to the greatest extent. These data illustrated conjoined mechanisms in glaucomatous RGC injury and Müller cell gliosis and suggested that NADPH and NAC collaborate as a neuroprotective and anti-inflammatory combination treatment for glaucoma and other underlying human neurodegenerative diseases.

Keywords: Antioxidants; MAPK; Müller cell; Ocular hypertension; Retinal ganglion cell.