A fully autonomous robotic ultrasound system for thyroid scanning

Nat Commun. 2024 May 11;15(1):4004. doi: 10.1038/s41467-024-48421-y.

Abstract

The current thyroid ultrasound relies heavily on the experience and skills of the sonographer and the expertise of the radiologist, and the process is physically and cognitively exhausting. In this paper, we report a fully autonomous robotic ultrasound system, which is able to scan thyroid regions without human assistance and identify malignant nod- ules. In this system, human skeleton point recognition, reinforcement learning, and force feedback are used to deal with the difficulties in locating thyroid targets. The orientation of the ultrasound probe is adjusted dynamically via Bayesian optimization. Experimental results on human participants demonstrated that this system can perform high-quality ultrasound scans, close to manual scans obtained by clinicians. Additionally, it has the potential to detect thyroid nodules and provide data on nodule characteristics for American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) calculation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bayes Theorem
  • Female
  • Humans
  • Male
  • Robotics* / instrumentation
  • Robotics* / methods
  • Thyroid Gland* / diagnostic imaging
  • Thyroid Neoplasms / diagnostic imaging
  • Thyroid Nodule* / diagnostic imaging
  • Thyroid Nodule* / pathology
  • Ultrasonography* / instrumentation
  • Ultrasonography* / methods