Impact on sulfadiazine bio-accessibility in soils through organic diffusive gradients in thin films (o-DGT): Differentiation based on microplastic polymers, aging, and soil properties

Sci Total Environ. 2024 May 10:933:173138. doi: 10.1016/j.scitotenv.2024.173138. Online ahead of print.

Abstract

Due to the similar sources of swage irrigation, organic fertilizer, and sludge application, microplastics (MPs) and antibiotics coexist inevitably in the agriculture soils. However, the impacts of MPs with different polymer types and aging status on the bio-accessibility of co-existing antibiotics in soils remained unclear. Therefore, we using the diffusive gradients films for organic compounds devices (o-DGT) to evaluated the distribution of sulfadiazine (SDZ) in both paddy soil and saline soil amended with 0.5 % (w/w) MPs. Four polymer types (polyethylene: PE, polypropylene: PP, polyamide: PA, and polyethylene terephthalate: PET) and two aging statuses (aged PE and aged PP) of MPs were used in this study. Results showed that soil properties significantly influence the partition of SDZ in soil and soil solution, and SDZ gained a lower degradation rate but higher mobility in saline soil. MPs pose different impacts on partition of SDZ between paddy soil and saline soil. Notably, PP reduced the labile solid phase-solution phase partition coefficient (Kdl) by 17.7 % in paddy soil, while PE, PP, and aPE increased the Kdl value by 2.00, 1.62, and 2.81 times in saline soil. Besides, in saline soil, all the MPs reduced the SDZ concentration in the soil solution, while significantly increased the SDZ in o-DGT phase. Conversely, MPs did not impact the SDZ's o-DGT concentration in paddy soil. Additionally, MPs increased the R value of SDZ in two soils, especially in saline soil. It suggested that MPs could potentially enhance the resupply of SDZ from soil to plants, particularly under saline conditions. Furthermore, aged MPs had a more pronounced effect on these indicators compared to virgin MPs in saline soil. Therefore, MPs in soil poses a potential risk for biota's uptake of SDZ, particularly in fragile environment. Moreover, the risk intensifies with aged MPs.

Keywords: Microplastics (MPs); O-DGT; Polymer types; Soil properties; Sulfadiazine (SDZ).