A Novel Preparation Method of Composite Bolted T-Joint with High Bending Performance Based on the Prepreg-RTM Co-Curing Process

Polymers (Basel). 2024 May 1;16(9):1259. doi: 10.3390/polym16091259.

Abstract

A co-curing resin system consisting of 9368 epoxy resin for prepreg and 6808 epoxy resin for resin transfer molding (RTM) was developed. A corresponding preparation method for a novel polymer composite bolted T-joint with internal skeleton and external skin was proposed based on the prepreg-RTM co-curing process, and novel T-joints were fabricated. A series of conventional configuration T-joints based on the RTM process and T-joints made of 2A12 aluminum alloy were prepared simultaneously. Bending performances were studied on these T-joints experimentally. The results indicate that 9368 epoxy resin and 6808 epoxy resin exhibit good compatibility in rheological and thermophysical properties. The novel T-joints prepared with the prepreg-RTM co-curing process show no obvious fiber local winding or resin-rich regions inside, and the interface quality between the internal skeleton and the external skin is excellent. The main failure modes of the novel T-joint under bending load include the separation of the skin and skeleton and the fracture along the thickness on the base panel; the skeleton carries the main bending load, but there is still load transfer between external skin and internal skeleton through their interface. The internal damages of the novel T-joint are highly consistent with surface damages observed visually, facilitating the detection and timely discovery of damages. The initial stiffness, damage initiation load, and ultimate load of the novel T-joint are 1.65 times, 5.89 times, and 3.45 times that of the conventional T-joint, respectively. When considering the influence of the density, the relative initial stiffness and relative ultimate load of the novel T-joint are 1.44 times and 2.07 times that of the aluminum alloy T-joint, respectively.

Keywords: T-joint; bending performance; polymer composite; preparation method; prepreg-RTM co-curing process.

Grants and funding

This research received no external funding.