Unconventional superconductivity without doping in infinite-layer nickelates under pressure

Nat Commun. 2024 May 10;15(1):3952. doi: 10.1038/s41467-024-48169-5.

Abstract

High-temperature unconventional superconductivity quite generically emerges from doping a strongly correlated parent compound, often (close to) an antiferromagnetic insulator. The recently developed dynamical vertex approximation is a state-of-the-art technique that has quantitatively predicted the superconducting dome of nickelates. Here, we apply it to study the effect of pressure in the infinite-layer nickelate SrxPr1-xNiO2. We reproduce the increase of the critical temperature (Tc) under pressure found in experiment up to 12 GPa. According to our results, Tc can be further increased with higher pressures. Even without Sr-doping the parent compound, PrNiO2, will become a high-temperature superconductor thanks to a strongly enhanced self-doping of the Ni d x 2 - y 2 orbital under pressure. With a maximal Tc of 100 K around 100 GPa, nickelate superconductors can reach that of the best cuprates.