Genomic epidemiology of Staphylococcus aureus from the Iberian Peninsula highlights the expansion of livestock associated-CC398 towards wildlife

Sci Total Environ. 2024 May 9:933:173027. doi: 10.1016/j.scitotenv.2024.173027. Online ahead of print.

Abstract

Staphylococcus aureus is a versatile pathobiont, exhibiting a broad host range, including humans, other mammals, and avian species. Host specificity determinants, virulence, and antimicrobial resistance genes are often shared by strains circulating at the animal-human interface. While transmission dynamics studies have shown strain exchange between humans and livestock, knowledge of the source, genetic diversification, and transmission drivers of S. aureus in wildlife lag behind. In this work, we explore a wide array of S. aureus genomes from different sources in the Iberian Peninsula to understand population structure, gene content and niche adaptation at the human-livestock-wildlife nexus. Through Bayesian inference, we address the hypothesis that S. aureus strains in wildlife originate from humanized landscapes, either from contact with humans or through interactions with livestock. Phylogenetic reconstruction applied to whole genome sequence data was completed with a dataset of 450 isolates featuring multiple clones from the 1990-2022 period and a subset of CC398 strains representing the 2008-2022 period. Phylodynamic signatures of S. aureus from the Iberian Peninsula suggest widespread circulation of most clones among humans before jumping to other hosts. The number of transitions of CC398 strains within each host category (human, livestock, wildlife) was high (88.26 %), while the posterior probability of transitions from livestock to wildlife was remarkably high (0.99). Microbial genome-wide association analysis did not evidence genome rearrangements nor biomarkers suggesting S. aureus niche adaptation to wildlife, thus supporting recent spill overs. Altogether, our findings indicate that S. aureus isolates collected in the past years from wildlife most likely represent multiple introduction events from livestock. The clonal origin of CC398 and its potential to disseminate and evolve through different animal host species are highlighted, calling for management practices at the livestock-wildlife axis to improve biosecurity and thus restrict S. aureus transmission and niche expansion along gradients of human influence.

Keywords: CC398; Phylodynamics; Staphylococcus aureus; Transmission; Wildlife; mGWAS.