Preoperative stereotactic radiosurgery for cerebral metastases: safe, effective, and decreases steroid dependency

J Neurosurg. 2024 May 10:1-11. doi: 10.3171/2024.2.JNS232426. Online ahead of print.

Abstract

Objective: Preoperative stereotactic radiosurgery (SRS) is emerging as a viable alternative to standard postoperative SRS. Studies have suggested that preoperative SRS provides comparable tumor control and overall survival (OS) and may reduce the incidence of leptomeningeal disease (LMD) and adverse radiation effects (AREs). It is unknown, however, if preoperative SRS remains effective in cohorts including large brain metastases (> 14 cm3) or if preoperative SRS affects steroid taper/immunotherapy. Here, the authors report the results of a phase 2 single-arm trial assessing a prospectively acquired series of 26 patients who underwent preoperative SRS, without a volumetric cutoff, compared with a propensity score-matched concurrent cohort of 30 patients who underwent postoperative SRS to address these salient questions.

Methods: Demographics, oncological history, surgical details, and outcomes were collected from the medical records. Coprimary endpoints were local tumor control (LTC) and a composite outcome of LTC, ARE, and LMD. Additional outcomes were OS, steroid taper details, and immunotherapy resumption. For survival analyses, cohorts were propensity score matched.

Results: Preoperative and postoperative SRS patients were comparable in terms of age, sex, Karnofsky Performance Status score, oncological history, and operative details. Gross tumor volume (GTV) was significantly higher in the preoperative group (median 12.2 vs 5.3 cm3, p < 0.001). One-year LTC (preoperative SRS: 77.2% vs postoperative SRS: 82.5%, p = 0.61) and composite outcome (68.3% vs 72.7%, p = 0.38) were not significantly different between the groups. In multivariable analysis, preoperative SRS did not have a significant effect on LTC (HR 1.57 [95% CI 0.38-6.49], p = 0.536) or the composite outcome (HR 1.18 [95% CI 0.38-3.72], p = 0.771), although the confidence intervals were large. The median OS (preoperative SRS: 17.0 vs postoperative SRS: 14.0 months, p = 0.61) was not significantly different. Rates of LMD were nonsignificantly lower in the preoperative SRS group (3.8% vs 16.7%, p = 0.200). Greater GTV volume was associated with prolonged (> 10 days) steroid taper (OR 1.24 [95% CI 1.04-1.55], p = 0.032). However, in multivariable analysis, preoperative SRS markedly reduced the steroid taper length (OR 0.13 [95% CI 0.02-0.61], p = 0.016). Time to immunotherapy was shorter in the preoperative SRS group (36 [IQR 26, 76] vs OR 228 [IQR 129, 436] days, p = 0.02).

Conclusions: Compared with postoperative SRS, preoperative SRS is a safe and effective strategy in the management of cerebral metastases of all sizes and provides comparable tumor control without increased adverse effects. Notably, preoperative SRS enabled rapid steroid taper, even in larger tumors. Future studies should specifically examine the interaction of preoperative SRS with steroid usage and resumption of systemic therapies and the subsequent effects on systemic progression and OS.

Keywords: cerebral metastases; immunotherapy; neoadjuvant; preoperative; stereotactic radiosurgery; steroids.