Electropolymerization of a Carbonyl-Modified Dihydropyrazine Derivative for Aqueous Zinc Batteries with Ultrahigh Cycling Stability

ACS Appl Mater Interfaces. 2024 May 22;16(20):26121-26129. doi: 10.1021/acsami.4c02285. Epub 2024 May 10.

Abstract

The design of aqueous zinc-ion batteries (ZIBs) that have high specific capacity and long-term stability is essential for future large-scale energy storage systems. Cathode materials with extended π-conjugation and abundant active sites are desirable to enhance the charge storage performance and the cycling stability of the aqueous ZIB. Based on this concept, 6,9-dihydropyrazino[2,3-g]quinoxaline-2,3,7,8(1H,4H)-tetrone was chosen as the monomer to be electropolymerized onto carbon cloth (PDHPQ-Tetrone/CC). When used as the cathode material for aqueous ZIBs, an exceptional cycling life (>20,000 cycles) at a current density of 10 A g-1 was achieved, with the specific capacity maintained at 82.8% and with the Coulombic efficiency at around 100% throughout cycling. At the charge-discharge current density of 0.1 A g-1, the ZIB with PDHPQ-Tetrone/CC achieved a high specific capacity of 248 mAh g-1. Kinetic analyses showed that both surface-capacitive-controlled processes and semi-infinite diffusion-controlled processes contribute to the stored charge. The charge storage mechanism was investigated with ex situ characterizations and involves the redox processes of carbonyl/hydroxyl and amino/imino groups coupled with insertion and extraction of both Zn2+ and H+.

Keywords: aqueous zinc-ion battery; carbonyl organic molecule; electropolymerization; long cycle life; organic cathode material.