From deep learning to the discovery of promising VEGFR-2 inhibitors

ChemMedChem. 2024 May 10:e202400108. doi: 10.1002/cmdc.202400108. Online ahead of print.

Abstract

Vascular endothelial growth factor receptor 2 (VEGFR-2) stands as a prominent therapeutic target in oncology, playing a critical role in angiogenesis, tumor growth, and metastasis. FDA-approved VEGFR-2 inhibitors are associated with diverse side effects. Thus, finding novel and more effective inhibitors is of utmost importance. In this study, a deep learning (DL) classification model was first developed and then employed to select putative active VEGFR-2 inhibitors from an in-house chemical library including 187 druglike compounds. A pool of 18 promising candidates was shortlisted and screened against VEGFR-2 by using molecular docking. Finally, two compounds, RHE-334 and EA-11, were prioritized as promising VEGFR-2 inhibitors by employing PLATO, our target fishing and bioactivity prediction platform. Based on this rationale, we prepared RHE-334 and EA-11 and successfully tested their anti-proliferative potential against MCF-7 human breast cancer cells with IC50 values of 26.78±4.02 and 38.73±3.84 µM, respectively. Their toxicities were instead challenged against the WI-38. Interestingly, expression studies indicated that, in the presence of RHE-334, VEGFR-2 was equal to 0.52±0.03, thus comparable to imatinib equal to 0.63±0.03. In conclusion, this workflow based on theoretical and experimental approaches demonstrates effective in identifying VEGFR-2 inhibitors and can be easily adapted to other medicinal chemistry goals.

Keywords: Deep learning; Molecular docking; VEGFR; breast cancer; virtual screening.