Predicting reservoir sedimentation using multilayer perceptron - Artificial neural network model with measured and forecasted hydrometeorological data in Gibe-III reservoir, Omo-Gibe River basin, Ethiopia

J Environ Manage. 2024 May:359:121018. doi: 10.1016/j.jenvman.2024.121018. Epub 2024 May 6.

Abstract

The estimation and prediction of the amount of sediment accumulated in reservoirs are imperative for sustainable reservoir sedimentation planning and management and to minimize reservoir storage capacity loss. The main objective of this study was to estimate and predict reservoir sedimentation using multilayer perceptron-artificial neural network (MLP-ANN) and random forest regressor (RFR) models in the Gibe-III reservoir, Omo-Gibe River basin. The hydrological and meteorological parameters considered for the estimation and prediction of reservoir sedimentation include annual rainfall, annual water inflow, minimum reservoir level, and reservoir storage capacity. The MLP-ANN and RFR models were employed to estimate and predict the amount of sediment accumulated in the Gibe-III reservoir using time series data from 2014 to 2022. ANN-architecture N4-100-100-1 with a coefficient of determination (R2) of 0.97 for the (80, 20) train-test approach was chosen because it showed better performance both in training and testing (validation) the model. The MLP-ANN and RFR models' performance evaluation was conducted using MAE, MSE, RMSE, and R2. The models' evaluation result revealed that the MLP-ANN model outperformed the RFR model. Regarding the train data simulation of MLP-ANN and RFR shown R2 (0.99) and RMSE (0.77); and R2 (0.97) and RMSE (1.80), respectively. On the other hand, the test data simulation of MLP-ANN and RFR demonstrated R2 (0.98) and RMSE (1.32); and R2 (0.96) and RMSE (2.64), respectively. The MLP-ANN model simulation output indicates that the amount of sediment accumulation in the Gibe-III reservoir will increase in the future, reaching 110 MT in 2030-2031, 130 MT in 2050-2051, and above 137 MTin 2071-2072.

Keywords: Artificial neural network; Machine learning; Multilayer perceptron; Random forest regressor; Remote sensing; Reservoir sedimentation.

MeSH terms

  • Environmental Monitoring / methods
  • Ethiopia
  • Geologic Sediments / analysis
  • Hydrology
  • Models, Theoretical
  • Neural Networks, Computer*
  • Rivers* / chemistry