Statistical Experimental Designs for cLTB-Syn Vaccine Production Using Daucus carota Cell Suspension Cultures

Planta Med. 2024 May 2. doi: 10.1055/a-2307-0400. Online ahead of print.

Abstract

The carrot-made LTB-Syn antigen (cLTB-Syn) is a vaccine candidate against synucleinopathies based on carrot cells expressing the target antigen LTB and syn epitopes. Therefore, the development of an efficient production process is required with media culture optimization to increase the production yields as the main goal. In this study, the effect of two nitrogen sources (urea and glutamate) on callus cultures producing cLTB-Syn was studied, observing that the addition of 17 mM urea to MS medium favored the biomass yield. To optimize the MS media composition, the influence of seven medium components on biomass and cLTB-Syn production was first evaluated by a Plackett-Burman design (PBD). Then, three factors were further analyzed using a central composite design (CCD) and response surface methodology (RSM). The results showed a 1.2-fold improvement in biomass, and a 4.5-fold improvement in cLTB-Syn production was achieved at the shake-flask scale. At the bioreactor scale, there was a 1.5-fold increase in biomass and a 2.8-fold increase in cLTB-Syn yield compared with the standard MS medium. Moreover, the cLTB-Syn vaccine induced humoral responses in BALB/c mice subjected to either oral or subcutaneous immunization. Therefore, cLTB-Syn is a promising vaccine candidate that will aid in developing immunotherapeutic strategies to combat PD and other neurodegenerative diseases without the need for cold storage, making it a financially viable option for massive immunization.