Terahertz metalens for generating multi-polarized focal points and images with uniform intensity distributions

Opt Lett. 2024 May 1;49(9):2241-2244. doi: 10.1364/OL.519605.

Abstract

Metasurfaces have provided a flexible platform for designing ultracompact metalenses with unusual functionalities. However, traditional multi-foci metalenses are limited to generating circularly polarized (CP) or linearly polarized (LP) focal points, and the intensity distributions are always inhomogeneous/chaotical between the multiple focal points. Here, an inverse design approach is proposed to optimize the in-plane orientation of each meta-atom in a terahertz (THz) multi-foci metalens that can generate multi-polarized focal points with nearly uniform intensity distributions. As a proof-of-principle example, we numerically and experimentally demonstrate an inversely designed metalens for simultaneously generating multiple CP- and LP-based focal points with homogeneous intensity distributions, leading to a multi-polarized image (rather than the holography). Furthermore, the multi-channel and multi-polarized images consisting of multiple focal points with homogeneous intensity distributions are also numerically demonstrated. The unique approach for inversely designing multi-foci metalens that can generate multi-polarized focal points and images with uniform intensity distributions will enable potential applications in imaging and sensing.