Anisotropic Fracture of Two-Dimensional Ta2NiSe5

Nano Lett. 2024 Apr 30. doi: 10.1021/acs.nanolett.4c01202. Online ahead of print.

Abstract

Anisotropic two-dimensional materials present a diverse range of physical characteristics, making them well-suited for applications in photonics and optoelectronics. While mechanical properties play a crucial role in determining the reliability and efficacy of 2D material-based devices, the fracture behavior of anisotropic 2D crystals remains relatively unexplored. Toward this end, we herein present the first measurement of the anisotropic fracture toughness of 2D Ta2NiSe5 by microelectromechanical system-based tensile tests. Our findings reveal a significant in-plane anisotropic ratio (∼3.0), accounting for crystal orientation-dependent crack paths. As the thickness increases, we observe an intriguing intraplanar-to-interplanar transition of fracture along the a-axis, manifesting as stepwise crack features attributed to interlayer slippage. In contrast, ruptures along the c-axis surprisingly exhibit persistent straightness and smoothness regardless of thickness, owing to the robust interlayer shear resistance. Our work affords a promising avenue for the construction of future electronics based on nanoribbons with atomically sharp edges.

Keywords: 2D Ta2NiSe5; fracture; in situ tensile test; interlayer shear; mechanical anisotropy.