Carbon Free Radical (R∙) Inactivates NF-κB for Radical Capping Therapy

Angew Chem Int Ed Engl. 2024 Apr 29:e202405913. doi: 10.1002/anie.202405913. Online ahead of print.

Abstract

Inactivating hyperactivated transcription factors can overcome tumor therapy resistance, but their undruggable features limit the development of conventional inhibitors. Here, we report that carbon-centered free radicals (R∙) can inactivate NF-κB transcription by capping the active sites in both NF-κB and DNA. We construct a type of thermosensitive R∙ initiator loaded amphiphilic nano-micelles to facilitate intracellular delivery of R∙. At a temperature of 43°C, the generated R∙ engage in electrophilic radical addition towards double bonds in nucleotide bases, and simultaneously cap the sulfhydryl residues in NF-κB through radical chain reaction. As a result, both NF-κB nuclear translocation and NF-κB-DNA binding are suppressed, leading to a remarkable NF-κB inhibition of up to 94.1%. We have further applied R∙ micelles in a clinical radiofrequency ablation tumor therapy model, showing remarkable NF-κB inactivation and consequently tumor metastasis inhibition. Radical capping strategy not only provides a method to solve the heat-sink effect in clinic tumor hyperthermia, but also suggests a new perspective for controllable modification of biomacromolecules in cancer therapy.

Keywords: Carbon radicals; NF-κB transcription suppression; nanomedicine; radical capping; tumor hyperthermia therapy.