A simple, fast and inexpensive approach to quantify low concentrations of iron in biodiesel by voltammetry after extraction induced by microemulsion breaking

Anal Methods. 2024 May 16;16(19):3047-3057. doi: 10.1039/d4ay00342j.

Abstract

An alternative approach to assay iron (Fe) in biodiesel by differential pulse adsorptive cathodic stripping voltammetry (DPAdCSV) is presented herein. The sample treatment involved a simple, rapid, but effective extraction of Fe from biodiesel into an aqueous phase after microemulsion (ME) breaking. Then, Fe was determined as the complex Fe(III)-PAN (1-(2-pyridylazo)-2-naphthol) on a glassy carbon electrode (GCE) in the presence of bismuth (Bi(III)). The extraction induced by microemulsion breaking (EIMB) was achieved by adding 0.80 mL of ultrapure water into a water-in-oil ME containing 7.00 mL biodiesel, 2.70 mL n-propanol and 0.30 mL of 0.25 mol L-1 HNO3 solution. No deliberate addition of surfactant was necessary to form and maintain the ME. The EIMB resulted in a 1.30 mL lower aqueous phase extract (APhEx) and an upper oily phase. DP voltammograms were recorded with a portable potentiostat, showing the potentiality of carrying out the determination out of a central laboratory. Another feature was the non-necessity of deaerating the solution to eliminate the dissolved O2. The limits of detection (LOD) and quantification (LOQ) were 1.7 μg L-1 (140 mg kg-1) and 5.5 μg L-1 (455 mg kg-1), respectively. The accuracy of the method was evaluated by recovery assays of spiked samples, by analyzing a standard reference material and by comparisons with high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS).