Application of metagenomic next-generation sequencing technology in the etiological diagnosis of peritoneal dialysis-associated peritonitis

Open Life Sci. 2024 Apr 26;19(1):20220865. doi: 10.1515/biol-2022-0865. eCollection 2024.

Abstract

Pathogens detected by metagenomic next-generation sequencing (mNGS) and the laboratory blood culture flask method were compared to understand the advantages and clinical significance of mNGS assays in the etiological diagnosis of peritoneal dialysis-associated peritonitis (PDAP). The study involved a total of 37 patients from the hospital's peritoneal dialysis centre, six of whom were patients with non-peritoneal dialysis-associated peritonitis. Peritoneal dialysis samples were collected from the 37 patients, who were divided into two groups. One group's samples were cultured using conventional blood culture flasks, and the other samples underwent pathogen testing using mNGS. The results showed that the positive rate of mNGS was 96.77%, while that of the blood culture flask method was 70.97% (p < 0.05). A total of 29 pathogens were detected by mNGS, namely 24 bacteria, one fungus, and four viruses. A total of 10 pathogens were detected using the bacterial blood culture method, namely nine bacteria and one fungus. The final judgment of the PDAP's causative pathogenic microorganism was made by combining the clinical condition, response to therapy, and the whole-genome sequencing findings. For mNGS, the sensitivity was 96.77%, the specificity was 83.33%, the positive predictive value was 96.77%, and the negative predictive value was 83.33%. For the blood culture flask method, the sensitivity was 70.97%, the specificity was 100%, the positive predictive value was 100%, and the negative predictive value was 0%. In conclusion, mNGS had a shorter detection time for diagnosing peritoneal dialysis-related peritonitis pathogens, with a higher positive rate than traditional bacterial cultures, providing significant advantages in diagnosing rare pathogens.

Keywords: blood culture flask method; infection; metagenomic next-generation sequencing; pathogen; peritoneal dialysis-associated peritonitis.