Underground Communication: Long Noncoding RNA Signaling in the Plant Rhizosphere

Plant Commun. 2024 Apr 27:100927. doi: 10.1016/j.xplc.2024.100927. Online ahead of print.

Abstract

Long non-coding RNAs (lncRNAs) have emerged as integral gene expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene expression governing interactions with soil biota, nutrient acquisition, and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that revealed lncRNA significance and target genes during developmental plasticity and stress responses at the rhizobium interface. Thus, a comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. As we look ahead, we foresee that single-cell dissection of cell type-specific lncRNA regulatory dynamics will enhance our understanding of precise developmental modulation mechanisms enabling plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will better reveal the integral lncRNA roles governing plant adaptation to the belowground environment.

Keywords: Biotic and abiotic cues; Heavy metal; Long non-coding RNAs; Nutrients; Phytoremediation; Rhizosphere microbiome.

Publication types

  • Review