Experimental Study on SPR Array Sensing Chip Integrated with Microvalves

Sensors (Basel). 2024 Apr 15;24(8):2540. doi: 10.3390/s24082540.

Abstract

This paper discusses a microfluidic system designed for surface plasmon resonance (SPR) sensing, incorporating integrated microvalves. This system is built from a layered structure of polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA). The functionality of the microvalves is verified through a conductance method involving electrodes positioned at the microfluidic channels' inlets and outlets. These microvalves can fully close at a control pressure of 0.3 MPa, with their operation depending on the duration of the applied pressure. The study further explores the coordinated operation of multiple microvalves to regulate the sequential flow of samples and reagents in the system. In SPR detection experiments, the microfluidic system is integrated with an SPR array sensing system to control the injection of NaCl solutions via the microvalves, and the observation of phase change curves in different chip regions are observed. The findings validate the microvalves' dependability and suitability for use in SPR array sensing.

Keywords: SPR array detection; electrolyte conductance; microfluidic system; pneumatic microvalve.