Developing Eco-Friendly 3D-Printing Composite Filament: Utilizing Palm Midrib to Reinforce High-Density Polyethylene Matrix in Design Applications

Polymers (Basel). 2024 Apr 18;16(8):1135. doi: 10.3390/polym16081135.

Abstract

Designers actively pursue the use of novel materials and concepts in furniture and interior design. By providing insights into their processing behavior and suitability for 3D-printing processes, this research helps to highlight the potential of using waste materials to create more environmentally friendly and sustainable 3D-printing filaments that can be used in furniture and interior design. Furthermore, the study evaluates the effect of incorporating palm midrib nanoparticles (DPFNPs) to reinforce a high-density polyethylene (HDPE) matrix with different loadings such as 10, 20, 30, 40, and 50 wt.%. The composites were extruded into filaments using a manual extruder, which was then utilized to fabricate 3D-printed specimens using a 3D-printing pen. The effect of adding DPFNPs on the composite's chemical, thermal, and mechanical properties was evaluated, with a particular focus on how these modifications influence the melt flow rate (MFR) and, subsequently, the material's printability. The results revealed that HDPE and filament composites presented similar FTIR spectra. On the other hand, the filament composites presented an increase in the thermal stability and a decrease in the mechanical strength with increasing DPFNP content in the HDPE matrix. The filaments were successfully printed using a 3D-printing pen. Thus, using DPFNPs in the HDPE matrix presents a low-cost alternative for filament production and may expand 3D-printing applications in interior and furniture design with more sustainable materials. Future work will delve into optimizing these composites for improved printability and assessing their recyclability, aiming to broaden their applications in 3D printing and beyond.

Keywords: 3D printing; date palm frond waste; filament composite; high-density polyethylene; interior design; recycling.