Development of Biphasic Injectable Hydrogels for Meniscus Scaffold from Photocrosslinked Glycidyl Methacrylate-Modified Poly(Vinyl Alcohol)/Glycidyl Methacrylate-Modified Silk Fibroin

Polymers (Basel). 2024 Apr 14;16(8):1093. doi: 10.3390/polym16081093.

Abstract

The development of a hydrogel material with a modified chemical structure of poly(vinyl alcohol) (PVA) and silk fibroin (SF) using glycidyl methacrylate (GMA) (denoted as PVA-g-GMA and SF-g-GMA) is an innovative approach in the field of biomaterials and meniscus tissue engineering in this study. The PVA-g-GMA/SF-g-GMA hydrogel was fabricated using different ratios of PVA-g-GMA to SF-g-GMA: 100/0, 75/25, 50/50, 25/75, and 0/100 (w/w of dry substances), using lithium phenyl (2,4,6-trimethylbenzoyl)phosphinate (LAP) as a free radical photoinitiator, for 10 min at a low ultraviolet (UV) intensity (365 nm, 6 mW/cm2). The mechanical properties, morphology, pore size, and biodegradability of the PVA-g-GMA/SF-g-GMA hydrogel were investigated. Finally, for clinical application, human chondrocyte cell lines (HCPCs) were mixed into PVA-g-GMA/SF-g-GMA solutions and fabricated into hydrogel to study the viability of live and dead cells and gene expression. The results indicate that as the SF-g-GMA content increased, the compressive modulus of the PVA-g-GMA/SF-g-GMA hydrogel dropped from approximately 173 to 11 kPa. The degradation rates of PVA-g-GMA/SF-g-GMA 100/0, 75/25, and 50/50 reached up to 15.61%, 17.23%, and 18.93% in 4 months, respectively. In all PVA-g-GMA/SF-g-GMA conditions on day 7, chondrocyte cell vitality exceeded 80%. The PVA-g-GMA/SF-g-GMA 75:25 and 50:50 hydrogels hold promise as a biomimetic biphasic injectable hydrogel for encapsulated augmentation, offering advantages in terms of rapid photocurability, tunable mechanical properties, favorable biological responses, and controlled degradation.

Keywords: biphasic injectable hydrogel; glycidyl methacrylate; meniscus tissue engineering; poly(vinyl alcohol); silk fibroin.