Evaluation of Motion Artifact Correction Technique for Cone-Beam Computed Tomography Image Considering Blood Vessel Geometry

J Clin Med. 2024 Apr 12;13(8):2253. doi: 10.3390/jcm13082253.

Abstract

Background: In this study, we present a quantitative method to evaluate the motion artifact correction (MAC) technique through the morphological analysis of blood vessels in the images before and after MAC. Methods: Cone-beam computed tomography (CBCT) scans of 37 patients who underwent transcatheter chemoembolization were obtained, and images were reconstructed with and without the MAC technique. First, two interventional radiologists selected the blood vessels corrected by MAC. We devised a motion-corrected index (MCI) metric that analyzed the morphology of blood vessels in 3D space using information on the centerline of blood vessels, and the blood vessels selected by the interventional radiologists were quantitatively evaluated using MCI. In addition, these blood vessels were qualitatively evaluated by two interventional radiologists. To validate the effectiveness of the devised MCI, we compared the MCI values in a blood vessel corrected by MAC and one non-corrected by MAC. Results: The visual evaluation revealed that motion correction was found in the images of 23 of 37 patients (62.2%), and a performance evaluation of MAC was performed with 54 blood vessels in 23 patients. The visual grading analysis score was 1.56 ± 0.57 (radiologist 1) and 1.56 ± 0.63 (radiologist 2), and the proposed MCI was 0.67 ± 0.11, indicating that the vascular morphology was well corrected by the MAC. Conclusions: We verified that our proposed method is useful for evaluating the MAC technique of CBCT, and the MAC technique can correct the blood vessels distorted by the patient's movement and respiration.

Keywords: CBCT; motion artifact correction; motion-corrected index; transcatheter chemoembolization; vessel analysis; visual grading analysis.