Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea

Life (Basel). 2024 Apr 22;14(4):534. doi: 10.3390/life14040534.

Abstract

The mitogenome is an important tool in taxonomic and evolutionary studies. Only a few complete mitogenomes have been reported for red algae. Herein, we reported the complete mitochondrial genome sequence of Fushitsunagia catenata (Harvey) Filloramo, G.V. and Saunders, G.W. 2016, a monospecific genus. The genome was 25,889 bp in circumference and had a strongly biased AT of 70.4%. It consisted of 2 rRNAs, 23 tRNAs, and 24 protein-coding genes (PCGs). nad5 (1986 bp) was the largest and atp9 (231 bp) was the smallest PCG. All PCGs used ATG as an initiation codon and TAA as a termination codon, except TAG, which was the termination codon used in the sdh3, rps3, and rps11 genes. The general structure and gene content of the present findings were almost identical to those of other red algae genomes, particularly those of the Rhodymeniales order. The maximum likelihood analysis showed that F. catenata was closely related to Rhodymenia pseudopalmata. The mitochondrial genome data presented in this study will enhance our understanding of evolution in Rhodophyta species.

Keywords: Fushitsunagia catenata; Rhodymeniales; mitogenome; phylogenetic analysis; red algae.