MES-CTNet: A Novel Capsule Transformer Network Base on a Multi-Domain Feature Map for Electroencephalogram-Based Emotion Recognition

Brain Sci. 2024 Mar 30;14(4):344. doi: 10.3390/brainsci14040344.

Abstract

Emotion recognition using the electroencephalogram (EEG) has garnered significant attention within the realm of human-computer interaction due to the wealth of genuine emotional data stored in EEG signals. However, traditional emotion recognition methods are deficient in mining the connection between multi-domain features and fitting their advantages. In this paper, we propose a novel capsule Transformer network based on a multi-domain feature for EEG-based emotion recognition, referred to as MES-CTNet. The model's core consists of a multichannel capsule neural network(CapsNet) embedded with ECA (Efficient Channel Attention) and SE (Squeeze and Excitation) blocks and a Transformer-based temporal coding layer. Firstly, a multi-domain feature map is constructed by combining the space-frequency-time characteristics of the multi-domain features as inputs to the model. Then, the local emotion features are extracted from the multi-domain feature maps by the improved CapsNet. Finally, the Transformer-based temporal coding layer is utilized to globally perceive the emotion feature information of the continuous time slices to obtain a final emotion state. The paper fully experimented on two standard datasets with different emotion labels, the DEAP and SEED datasets. On the DEAP dataset, MES-CTNet achieved an average accuracy of 98.31% in the valence dimension and 98.28% in the arousal dimension; it achieved 94.91% for the cross-session task on the SEED dataset, demonstrating superior performance compared to traditional EEG emotion recognition methods. The MES-CTNet method, utilizing a multi-domain feature map as proposed herein, offers a broader observation perspective for EEG-based emotion recognition. It significantly enhances the classification recognition rate, thereby holding considerable theoretical and practical value in the EEG emotion recognition domain.

Keywords: Transformer; capsule neural network; electroencephalogram; emotion recognition; multi-domain feature.