Enhanced fluoride removal using Mg-Zr binary metal oxide nanoparticles confined in a strong-base anion exchanger

Chemosphere. 2024 Apr 24:358:141980. doi: 10.1016/j.chemosphere.2024.141980. Online ahead of print.

Abstract

Generally, the pH of fluorinated groundwater or many industrial wastewater is neutral, while the majority of metal-modified adsorbents can work efficiently only under acidic conditions. In this study, we synthesized a novel hybrid adsorbent, Mg-Zr-D213, by loading nano-Mg/Zr binary metal (hydrogen) oxides in a strong-base anion exchanger, D213, to enhance the adsorption of fluoride from neutral water. Mg-Zr-D213 exhibited a better fluoride-removal capacity in neutral water than monometallic modified resins. Under the interference of competing anions and coexisting organic acids, Mg-Zr-D213 exhibited superior selectivity. The Langmuir model indicated that the fitted maximum sorption capacity of Mg-Zr-D213 was 41.38 mg/g. The results of column experiments showed that the effective treatment volume of Mg-Zr-D213 was 8-16-times higher than that of D213 for both synthetic groundwater and actual industrial wastewater, and that NaOH-NaCl eluent could effectively recover more than 95% of fluoride. Adsorption experiments with Mg/Zr metal (hydrogen) oxide particles and D213 separately demonstrated a synergistic effect between -N+(CH3)3 and Mg/Zr metal (hydrogen) oxide particles. The ligand exchange or metal-ligand interaction of Mg/Zr metal (hydrogen) oxide particles on fluoride was further demonstrated via X-ray photoelectron spectroscopy. Overall, Mg-Zr-D213 has great potential for enhanced fluoride removal in neutral water.

Keywords: Binary metal (hydrogen) oxide; Fluoride removal; Mg–Zr-D213; Strong-base anion exchanger.