Transcriptome analysis reveals that gga-miR-2954 inhibits the inflammatory response against Eimeria tenella infection

Int J Biol Macromol. 2024 Apr 25;269(Pt 1):131807. doi: 10.1016/j.ijbiomac.2024.131807. Online ahead of print.

Abstract

Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1β, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.

Keywords: Chicken; Eimeria tenella; Inflammatory response; MicroRNA; RORC.