Shenqi Yizhi prescription prevents AβO-induced memory impairment in mice by regulating the contractility of brain pericytes

Phytomedicine. 2024 Apr 14:129:155639. doi: 10.1016/j.phymed.2024.155639. Online ahead of print.

Abstract

Background: Cerebral microcirculation disturbance manifested by decrease of cerebral blood flow (CBF) is one of early features of Alzheimer's disease (AD). Shenqi Yizhi prescription (SQYZ) is widely used in the treatment of AD. However, the effect of SQYZ on the early feature of AD is not clarified.

Purpose: To explore the effect and mechanism of SQYZ on AD-like behavior from the perspective of early pathological features of AD.

Methods: The fingerprint of SQYZ was established by ultra-high-performance liquid chromatograph. The improvement effect of SQYZ on Aβ1-42 Oligomer (AβO)-induced AD-like behavior of mice was evaluated by behavioral test. The changes of CBF were detected by laser doppler meter and laser speckle imaging. The pathological changes of the hippocampus were observed by HE staining and transmission electron microscope. The expressions of intercellular communication molecules were detected by western blotting or immunofluorescence staining. The content of platelet-derived growth factor-BB (PDGF-BB) was detected by ELISA. Finally, the core components of SQYZ were docked with platelet-derived growth factor receptor beta (PDGFRβ) using AutoDock Vina software.

Results: The similarity of the components in SQYZ extracted from different batches of medicinal materials was higher than 0.9. SQYZ administration could improve AβO-induced memory impairment and CBF reduction. Compared with the sham group, the number of neurons in the hippocampi of AβO group was significantly reduced, and the microvessels were shrunken and deformed. By contrary, SQYZ administration mitigated those pathological changes. Compared with the sham mice, the expressions of CD31, N-cadherin, PDGFRβ, glial fibrillary acidic protein, phosphorylation of focal adhesion kinase, integrin β1, and integrin α5 in the hippocampi of AβO mice were significantly increased. However, SQYZ administration significantly reduced AβO-induced expression of those proteins. Interestingly, the effect of PDGFRβ inhibitor, sunitinib demonstrated a consistent modulating effect as SQYZ. Finally, the brain-entering components of SQYZ, including ginsenoside Rg5, coptisine, cryptotanshinone, dihydrotanshinone IIA, stigmasterol, and tanshinone IIA had high binding force with PDGFRβ, implicating PDGFRβ as a potential target for SQYZ.

Conclusions: Our data indicate that SQYZ improves CBF in AβO-triggered AD-like mice through inhibiting brain pericyte contractility, indicating the treatment potential of SQYZ for AD at the early stage.

Keywords: Alzheimer's disease; Cerebral blood flow; PDGFRβ; Pericyte; Shenqi Yizhi prescription.