In vitro demonstration of antedrug mechanism of a pharmacokinetic booster to improve CYP3A4 substrates by CYP3A4-mediated metabolism inhibition

Drug Metab Pharmacokinet. 2024 Mar 2:56:101005. doi: 10.1016/j.dmpk.2024.101005. Online ahead of print.

Abstract

We previously reported novel benzyl-ether derivatives with an imidazole ring and a hydroxyl group (A-01) or carboxyl group (B-01) and esters (2 esters of A-01, and 7 esters of B-01) as pharmacokinetics (PK) boosters. This study demonstrates how these ester compounds embody the concept of a safe pharmacokinetic booster, with potent and transient inhibition of CYP3A4-mediated drug metabolism. As a model CYP3A4 substrate and CYP3A4 enzyme, midazolam (MDZ) and rat liver microsomes were used. A-01 inhibited MDZ metabolism significantly, while B-01 induced only slight inhibition. Although rat liver microsomes hydrolyzed the ester compounds over time, several ester compounds strongly inhibited MDZ metabolism. Due to the significant activity of A-01, A-01 esters affected MDZ metabolism, irrespective of hydrolysis state. Time-dependent inhibition evaluation indicated that the B-01 ester inhibition is not mechanism-based, as hydrolysis eliminated MDZ metabolism inhibition. We report that the B-01 esters significantly inhibit CYP3A4-mediated drug metabolism, and upon hydrolysis this property is eliminated. In conclusion, B-01 ester compounds may be safe PK boosters with antedrug characteristics.

Keywords: Booster; CYP3A4; Drug-drug interaction; Inhibition; Metabolism.