Chiral Spectroscopy of Bulk Systems with Propagated Localized Orbitals

J Chem Theory Comput. 2024 May 14;20(9):3894-3910. doi: 10.1021/acs.jctc.4c00235. Epub 2024 Apr 25.

Abstract

We present approaches for the simulation of electronic circular dichroism, Raman, and Raman optical activity (ROA) spectra for isolated and periodic systems as well as subsystem analysis thereof. The method is based on the use of time-dependent maximally localized Wannier functions in the CP2K package and accounts for origin dependencies inherent to the Gaussian and plane wave with pseudopotentials approach as well as the origin dependence of the magnetic dipole and electric quadrupole operators. Tests on the H-bonded enantiomers of alanine by harmonic normal-mode analysis and on an aqueous solution of l-alanine by ab initio molecular dynamics obeying periodic boundary conditions (PBCs) are presented as total and subsystem-resolved spectra. To our knowledge, this is the first instance of an ROA spectrum derived from real-time propagation obeying PBCs and the first ROA simulation considering off-, pre-, and on-resonance effects within PBCs.