The influence of nanosunflower ash and nanowalnut shell ash on sustainable lightweight self-compacting concrete characteristics

Sci Rep. 2024 Apr 24;14(1):9450. doi: 10.1038/s41598-024-60096-5.

Abstract

The absence of biodegradability exhibited by plastics is a matter of significant concern among environmentalists and scientists on a global scale. Therefore, it is essential to figure out potential pathways for the use of recycled plastics. The prospective applications of its utilisation in concrete are noteworthy. The use of recycled plastic into concrete, either as a partial or complete substitution for natural aggregates, addresses the issue of its proper disposal besides contributing to the preservation of natural aggregate resources. Furthermore, the use of agricultural wastes has been regarded as a very promising waste-based substance in the industry of concrete manufacturing, with the aim of fostering the creation of an environmentally sustainable construction material. This paper illustrates the impact of nano sunflower ash (NSFA) and nano walnut shells ash (NWSA) on durability (compressive strength and density after exposure to 800 °C and sulphate attack), mechanical properties (flexural, splitting tensile and compressive strength) and fresh characteristics (slump flow diameter, T50, V-funnel flow time, L-box height ratio, segregation resistance and density) of lightweight self-compacting concrete (LWSCC). The waste walnut shells and local Iraqi sunflower were calcinated at 700 ± 50 °C for 2 h and milled for 3 h using ball milling for producing NSFA and NWSA. The ball milling succeeded in reducing the particle size lower than 75 nm for NSFA and NWSA. The preparation of seven LWSCC concrete mixes was carried out to obtain a control mix, three mixtures were created using 10%, 20% and 30% NWSA, and the other three mixtures included 10%, 20% and 30% NSFA. The normal weight coarse aggregates were substituted by the plastic waste lightweight coarse aggregate with a ratio of 75%. The fresh LWSCC passing capacity, segregation resistance, and filling capability were evaluated. The hardened characteristics of LWSCC were evaluated by determining the flexural and splitting tensile strength at 7, 14 and 28 days and the compressive strength was measured at 7, 14, 28 and 60 days. Dry density and compressive strength were measured after exposing mixes to a temperature of 800 °C for 3 h and immersed in 10% magnesium sulphate attack. The results demonstrated that the LWSCC mechanical characteristics were reduced when the percentages of NWSA and NSFA increased, except for 10% NWSA substitution ratio which had an increase in splitting tensile strength test and similar flexural strength test to the control mixture. A minor change in mechanical characteristics was observed within the results of LWSCC dry density and compressive strength incorporating various NSFA and NWSA` contents after exposing to temperature 800 °C and immersed in 10% magnesium sulphate attack. Furthermore, according to the findings, it is possible to use a combination of materials consisting of 10-20% NSFA and 10-20% NWSA to produce LWSCC.

Keywords: Elevated temperature; Lightweight self-compacting concrete; Nano sunflower ash; Nano walnut ash; Sulphate attack; Waste plastic.